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The critical behavior of the Ising model with nonconserved dynamics and an external driving field mimick-
ing a shear profile is analyzed by studying its dynamical evolution in the short-time regime. Starting from
high-temperature disordered configurations �fully disordered configurations, FDC�, the critical temperature Tc

is determined when the order parameter, defined as the absolute value of the transversal spin profile, exhibits
a power-law behavior with an exponent that is a combination of some of the critical exponents of the transition.
For each value of the shear field magnitude, labeled as �̇, Tc has been estimated and two stages have been
found: �1� a growing stage at low values of �̇, where Tc� �̇� and �=0.52�3�, and �2� a saturation regime at
large �̇. The same values of Tc��̇� were found studying the dynamical evolution from the ground-state con-
figuration with all spins pointing in the same direction. By combining the exponents of the corresponding
power laws obtained from each initial configuration, the set of critical exponents was calculated. These values,
at large external field magnitude, define a critical behavior different from that of the Ising model and of other
driven lattice gases.
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I. INTRODUCTION

The statistical mechanics of equilibrium phenomena is a
very useful theoretical framework for understanding the ther-
modynamic properties of many-particle systems from a mi-
croscopic point of view. However, in nature, most of the
systems evolve under out-of-equilibrium conditions and
there is not yet a suitable general framework to study them as
in the case of equilibrium systems. Nevertheless, some
progresses have been achieved in the knowledge of far from
equilibrium behavior by means of simple models, capable to
catch the essential physics of nonequilibrium processes.

In this context, we present a very simple model, derived
from the Ising model, driven out of equilibrium by an exter-
nal field that mimics the effects of a uniform shear profile
�1�. This model evolves with a nonconserved dynamics, cor-
responding to model A in the classification of Hohenberg and
Halperin �2�, and it was already used by Cavagna et al. �3�
and by Cirillo et al. �4� to study phase separation.

We will focus on the study of phase-transition properties
in this model. Typical configurations observed in our simu-
lations are displayed in Fig. 1. At low temperatures, the sys-
tem appears ordered with elongated domains directed along
the field direction. At high temperatures, the system exhibits
a gaslike appearance with disordered patterns. Similar or-
dered and disordered phases, also experimentally found �5�,
generally characterize the behavior of sheared binary sys-
tems. As usually in systems with an applied external field,
the transition point is a function of the magnitude of the
driving field �6�.

Previous theoretical and experimental studies have shown
that sheared binary systems undergo a second-order phase
transition at a critical temperature Tc �6�. In diffusive sys-
tems, the effect of the external driving field is to inhibit
fluctuations so that the critical temperature is expected to

increase with the magnitude of the driving. In a continuum
model with nonconserved dynamics, in the large-N analytical
approximation, it has been found that the value of the critical
temperature depends on the driving field following a power
law at small field magnitudes �7�. In previous Monte Carlo
studies on the critical behavior of sheared Ising models �8�, it
was not possible to extract information about the critical
temperature due to numerical uncertainties and finite-size ef-
fects �9�. In view of this, we revisit this issue in order to
determine the critical temperature of the model as a function
of the magnitude of the external field and to compute the
critical exponents in this model. For the sake of comparison,
we will contrast the obtained values with those computed for
the 2d driven lattice-gas model �DLG� �11� that will be
briefly described in the next section.

To study the phase transition in the model, the critical
dynamical behavior will be investigated by monitoring the
time evolution of some observables before the system
reaches nonequilibrium steady states �NESSs�. This tech-

FIG. 1. Snapshot configurations corresponding to the two phases
of the Ising model with shear. In the left panel, we observe a typical
stripelike configuration at T�Tc. In the right panel, a configuration
at T�Tc is displayed. The external field is applied along the hori-
zontal axis.
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nique, generally called short-time dynamics �12,13�, is an
alternative convenient way to obtain both the critical tem-
perature and exponents precisely, with less computational
cost than other methods commonly used, such as the finite-
size scaling applied to the specific heat and response func-
tions that require a considerably amount of simulation time
in order to reach NESS. Furthermore, since the measure-
ments are carried out in the first steps of evolution, the short-
time dynamic approach is free of the critical slowing down.

The paper is organized as follows. In Sec. II, the Ising
model with the external shear field is introduced. The tech-
nique used to study the phase transition is described in Sec.
III. The simulation results are presented in Sec. IV and fi-
nally the conclusions are stated in Sec. V.

II. MODEL

We will consider the nearest-neighbor two-dimensional
Ising model with a single-spin-flip thermalization dynamics,
e.g., the Metropolis dynamics �14�. The driving field will be
defined in order to mimic the convective velocity shear pro-
file

vx�y� = �̇y, vy = 0, �1�

where the parameter �̇ is called the shear rate and represents
the shear field magnitude. If the system is imagined as a
sequence of layers labeled by y, then �̇y is the displacement
of the layer y in a unit of time. If Ly is the vertical size and
vmax is the speed of the fastest layer, then �̇Ly =vmax.

The model is defined on a square lattice � of horizontal
and vertical sizes Lx, Ly respectively, with periodic boundary
conditions in the Lx direction and free in the Ly direction.
More precisely, let �= �−1,+1�� be the space of configura-
tions and, for ���, let �x,y be the value of the spin associ-
ated to the site �x ,y���. Then the Hamiltonian of the model
is

H���� = − J�
y=1

Ly

�
x=1

Lx

�x,y�x+1,y − J�
x=1

Lx

�
y=1

Ly−1

�x,y�x,y+1, �2�

with �Lx+1,y =�1,y for all y=1, . . . ,Ly and J is a positive real
coupling constant, which means that the interactions are fer-
romagnetic. We will combine the thermalization dynamics
with an algorithm introducing the shear in the system. The
shear is superimposed to the thermalization dynamics with
typical rates not depending on the thermalization phenom-
enon, but fixed a priori. This has been done in different ways
in �3,8,15�. In this paper, we use a very ductile generalization
of those dynamics aiming to introduce the shear effects in a
way resulting competitive with respect to the thermalization
process. Notice that our dynamics results from the combina-
tion of two steps: �i� a thermalization step which would bring
the system in the usual equilibrium and �ii� a shear step
which changes the configurations of the system forbidding to
reach the equilibrium. Therefore, all together, our algorithm
does not satisfy local detailed balance expressed in terms of
standard equilibrium probabilities of configurations. Similar
models have been also used in different context of nonequi-
librium studies �16�.

Let the time unit be the time needed for a full thermal
update of the entire lattice, e.g., a full sweep of the Metropo-
lis algorithm. The shear algorithm is parametrized with a
submultiple � of LyLx �the period of the shear procedure�, a
positive integer 	
Lx /2 �the number of unit cells that a row
is shifted when the shear is performed�, and a nonnegative
real �
1 /Ly. The dynamics of the model that we study in
this paper is defined in a precise way via the following algo-
rithm:

�1� Set t=0, choose �0��, and set n=0;
�2� increase by 1 the index n and choose at random with

uniform probability 1 /LxLy a site of the lattice and perform
the elementary single-site step of the thermalization dynam-
ics;

�3� if n is multiple of �, a layer is randomly chosen with
uniform probability 1 /Ly. Then, if ȳ is the chosen layer, all
the layers with y� ȳ are shifted by 	 lattice spacings to the
right with probability �Ly;

�4� if n�LxLy, go to 2, else denote by �t+1 the configu-
ration of the system;

�5� set t= t+1, set n=0, and go to 2.
We note that if �=1 /Ly, the shift at step 3 is surely per-

formed and this case will be later addressed to as full shear.
The smoothness of the shear field, Eq. �1�, is ensured by the
random choice of the layer ȳ in step 3. Now we want to
express the shear rate �̇, introduced in Eq. �1�, in terms of the
parameters of our dynamics. We have to estimate the typical
displacement per unit of time of the row labeled by y. Such
a row is involved in a shear event, step 3 of the algorithm
above, if and only if the extracted row ȳ is such as ȳ
y and
this happens with probability y /Ly. Since the shear event
results in a shift with probability �Ly, the probability that
during a shear event the row y does shift is given by

y

Ly
�Ly = �y .

By noting that the number of shift events per unit of time is
equal to LxLy /� and recalling that the shift amplitude is 	, we
have that the typical shift of the row y per unit of time is
given by

LxLy

�
	�y .

By using definition �1�, we finally get �̇=LxLy�	 /�, which
becomes �̇=Lx	 /� in the case of full shear.

It is important to remark that there exists a large variety of
models that evolve under nonequilibrium states by the action
of an external field. An example is the DLG where the driv-
ing field is not superimposed to the thermalization dynamics,
but it is rather inserted in the Metropolis transition rates, that
become anisotropic, and biases the movement of particles
along its direction �10�. Furthermore, it exhibits a second-
order phase transition at particle density 
=1 /2, between an
ordered phase at low temperatures characterized by regions
of low and high particle density, called stripes, oriented
along the field direction, and a disordered phase at high tem-
peratures with the appearance of a lattice gas. Both ordered
and disordered phases have a similar appearance with those
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exhibited in Fig. 1. The critical temperature increases with
the magnitude of the external field, saturating at Tc
�1.41Tc�0� in the case of infinite �10�. Here, Tc�0�
=2.269J /kB is the critical temperature of the 2d Ising model
�J is the coupling constant and kB is the Boltzmann constant�.

III. DYNAMICAL CRITICAL BEHAVIOR

It is known that, for systems exhibiting critical behavior,
the relevant observables measured in equilibrium stationary
states can be written in terms of power laws, with character-
istic critical exponents due to the divergence of both the
spatial correlations and the correlation time. In recent years,
however, the attention has been also focused to the early
stages of the evolution of the system toward the critical state,
that is, to a microscopic time regime where the spatial cor-
relation length is small compared to the system size �12�.
Within this regime, it is possible to measure scaling laws of
the observable quantities �13,17�. This new method to study
second-order phase transitions, called short-time dynamics,
allows us to estimate the critical temperature and to compute
the critical exponents of the transition with relative quick-
ness and avoids the shortcomings that more usual techniques
present to study critical behavior. Furthermore, the short-
time dynamics has been applied to investigate the critical
behavior of a wide range of systems of different nature, such
as models showing criticality under equilibrium conditions,
such as, e.g., the XY systems �18�, the 2d three-state Potts
model �13�, the Ising magnet under different lattice geom-
etries �19,20�, and of nonequilibrium critical models such as
the driven DLG �21–23�, etc. In these last three works, a
detailed analysis of the second-order �21,22� and first-order
�23� nonequilibrium phase transitions was performed by us-
ing the short-time critical dynamic methodology. For the
second-order phase transition, the excellent agreement be-
tween critical exponents evaluated using the standard �sta-
tionary� and dynamical �short-time� approaches strongly sup-
ports the robustness of this method. Encouraged by this
success, our goal is to extend the short-time dynamics con-
cept to this model, basing our ideas on the already developed
short-time dynamics method for the DLG model in Ref. �21�.

The abovementioned scaling laws can be observed em-
ploying two different initial configurations, namely, �1� fully
disordered configurations �FDCs�, which means that the sys-
tem is initially placed in a thermal bath at T→� and the
system configuration is similar to that exhibited in the right
panels of Figs. 1 and 2 completely ordered configurations or
ground-state configurations �GSCs� as expected for T=0. In
our model, based on the fact that the equilibrium Ising model
has all the spins pointing in the same direction �i.e., magne-
tization M =1 or −1� at this temperature, we will adopt this
configuration as the ground state for testing the short-time
dynamic behavior.

The shear field introduces anisotropic effects that generate
anisotropic correlations in the system. As a consequence of
this, there will be two correlation lengths, namely, �1� a par-
allel or longitudinal correlation length �	 along the external
field direction and �2� a perpendicular or transverse correla-
tion length �� perpendicular to �	. Whatever the initial con-

dition is used to start the system, both spatial correlation
lengths are quite small or zero at the beginning of the dy-
namic process and near the critical temperature Tc, they in-
crease dynamically as a power law �	���� t1/z	���, where z	���
is the dynamic critical exponent in the respective directions.

Before we start to describe the theoretical basis of the
technique applied to this model, we set the external driving
field along the horizontal direction, i.e., the x axis. Also, we
need to define quantities that are relevant in the critical be-
havior of the model. Based on the morphological appearance
of typical configurations present in the system �see Fig. 1�,
we will consider a variant of the order parameter Op em-
ployed in the critical study of the DLG model �21�

Op =
1

Ly
�
y=1

Ly


P�y�
 , �3�

where P�y�= 1
Lx

�x=1
Lx �x,y is the average of the spin profile in

the shear field axis. The order parameter defined in this way
can take into account the small ordering that appears at the
early stages of the evolution.

There is one more point to take into account before we
start to expose the method applied to this system. In all for-
mulas below, we will assume, and demonstrate later, that
only the parallel correlation length is relevant in the short-
time critical evolution of the system. In fact, at T�Tc��̇� and
at early times of evolution, parallel and perpendicular corre-
lations begin to increase. However, domains of perpendicu-
larly correlated spins are broken by the shear and assume a
characteristic elongated shape, also observed in many experi-
mental studies of sheared systems. As a consequence of this,
transversal correlations grow slower than parallel correla-
tions, so they do not take part in the dynamic critical behav-
ior of the model at short times. This effect was also shown
for the DLG model �21,22�. Since this happens indepen-
dently of the initial configuration, we will take z=z	 in every
expression below. Furthermore, they must contain the aniso-
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FIG. 2. Log-log plot of the short-time evolution of Op�t� starting
from FDC configurations in a system with Lx=Ly =512 and �̇=5.
The best fit of the raw data gives a power-law behavior at Tc

=2.660, as it is indicated by the dashed straight line. Upward and
downward deviations from this behavior can also be observed for
T=2.655 and T=2.665, respectively.
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tropic finite-size dependence in order to match the usual an-
isotropic scaling forms for the NESS regime.

Starting with FDCs, the scaling law proposed for the or-
der parameter �Op� reads �21�

Op�t,�,Lx,Ly� = b−�/�	Op
��b−zt,b1/�	�,b−1Lx,b

−��/�	Ly� ,

�4�

where t is the time, b is the spatial rescaling factor, � is the
critical exponent of the order parameter, �	��� are the corre-
lation length critical exponents in the x �y� axis ��	���
��−�	����, Op

� is a scaling function, z is the already mentioned
dynamic exponent of the longitudinal correlation length, and
�=

T−Tc

Tc
. Notice also that Ly is rescaled by b−��/�	 to include

possible shape effects in the dynamic critical behavior �10�.
To generate the FDC initial conditions, the lattice is filled

at random with exactly 
0LxLy particles, being 
0=1 /2 the
density of up spins. However, the number of particles on
each row parallel to the field axis is not the same for all rows.
This generates tiny density fluctuations along this direction,
which are of the order of �1 /Lx�−1/2, in agreement with the
central limit theorem. According to Eq. �4�, these fluctuations
add up and the amplitude of Op depends on Lx

−1/2.1 We have
to take into account this expression for the final form of the
time evolution of Op. Setting b� t1/z, Eq. �4� becomes

Op�t,�,Lx,Ly� = t−�/�	zOp
��1,t1/�	z�,t−1/zLx,t

−��/�	zLy� . �5�

Then, if t−1/zLx is extracted out of the scale function in Eq.
�5�, we have

Op�t,�,Lx,Ly� = t−�/�	z�t−1/zLx�xOp
���1,t1/�	z�,t−��/�	zLy� ,

�6�

but since Op�1 /Lx
1/2, then x=−1 /2, so the final expression

for Op�t� is the following:

Op�t,�,Lx� = Lx
−1/2tc1Op

���t1/�	z�� , Lx,Ly → � , �7�

with c1= �1−2� /�	� /2z �21�.
Furthermore, it is easy to show that the logarithmic de-

rivative of Op with respect to �, given by Eq. �7� at critical-
ity, behaves as

�� ln Op�t,�� � tc2, �8�

where the exponent is c2=1 /�	z.
On the other hand, starting the system from the GSC con-

figuration described above and according to the scaling be-
havior proposed in �21�, we have

Op�t,�,Lx,Ly� = b−�/��Op
����b−zt,b1/���,b−1Lx,b

−�	/��Ly� ,

�9�

where Op
��� is another scaling function. Here we have also

included the shape scaling factor b−��/�	Ly. Proceeding in the
same way as in the above case, we have, taking b� t1/z in Eq.
�9� at criticality, the following expression for Op:

Op�t� � t−c3, Lx,Ly → � , �10�

with an exponent c3=� /��z. Moreover, the derivative of Eq.
�10� with respect to � at criticality is given by

��Op�t� � tc4, �11�

where the exponent is c4= �1−�� /��z.

IV. SIMULATION RESULTS

A. Critical temperature

In this work, we used rectangular and square lattices of
different sizes Lx ,Ly, in the range 128
Lx ,Ly 
10 000 lat-
tice units. The critical dynamics of the model was investi-
gated as a function of the shear magnitude in the range
1 /32
�̇
50. The temperatures were measured in units of
J /kB, kB being the Boltzmann constant, and the time is mea-
sured in Monte Carlo steps �MCSs�, where one unit consists
of LxLy attempts for spin updates. The time evolution was
sampled from 100 to 1000 realizations of the system accord-
ing to each initial condition and temperature.

We begin showing our results by considering the critical
dynamic evolution of the system when it is started from FDC
configurations and then coupled with a thermal bath at T
�Tc. In Fig. 2, the time evolution of Op�t� is shown for a
system where a shear field is applied with shear rate �̇=5.
The best power-law behavior is obtained at T=Tc=2.660 be-
fore Op�t� reaches a saturation value due to finite-size effects.
On the other hand, if T�Tc or T�Tc, Op deviates from the
power-law behavior as Eq. �7� states and the curve shows an
upward or downward bending, respectively �see the curves
corresponding to T=2.655 and T=2.665 in the same figure�.

The critical dynamic evolution was investigated by per-
forming simulations also on rectangular lattices. The plots in
Fig. 3 display the dynamic evolutions of Op�t� at T=Tc for
two shear field magnitudes, �̇=1 /2 and �̇=10 in panels �a�
and �b�, respectively. The lattice sizes used are indicated in
the legend of each plot by the notation Lx�Ly. In the main
plots of each figure, all early-time evolutions exhibit the
same power-law behavior with similar values of the expo-
nent c1 �Eq. �7��. Then, a saturation value is reached, Op

sat,
that depends only on Lx, as it can be observed in lattices with
longitudinal sizes Lx=500 and Lx=1000 for �̇=1 /2 and Lx
=500 for �̇=10, respectively. So, these plots show that the
early-time critical evolution of the system is free from lattice
shape effects �10� because the relation between the longitu-
dinal and transversal sizes is different for each studied case.
The same was observed in the short-time critical evolution of
the DLG model �21�. In addition, the power-law behaviors
can be collapsed by rescaling Op�t� by Lx

1/2 as it is proposed
in Eq. �7�. This is shown in the insets of both figures.

Then, the critical points of the system at several values of
the shear field magnitudes �̇ were found. Figure 4 shows that
the power-law behavior of Op collapses for large values of �̇,
i.e., �̇=5, 10, and 50, and occurs at approximately the same
critical temperatures for each shear rate. These temperatures
are larger than the estimated for the equilibrium Ising model,
Tc��̇=0�=2.269 �see Table I�. However, the time evolution
of Op depends on the shear field if �̇ is small, as it can be

1These fluctuations are equivalent to the initial magnetization m0

in the original formulation of short-time dynamics �17�.
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seen for the cases �̇=1 /32 and �̇=1 /10. Although these
magnitudes are quite small, they are enough to raise the criti-
cal temperature to Tc��̇=1 /32�=2.29 and Tc��̇=1 /10�
=2.395, both close but greater than the critical temperature
of the Ising model. This confirms that the critical temperature
depends on the shear field magnitude, as found by theoretical
studies �7�.

Once the critical temperatures Tc corresponding to the dif-
ferent �̇’s were collected, a diagram of critical temperatures
versus �̇ can be performed. Figure 5 shows that two regimes
can be distinguished. In the first regime, the critical tempera-
ture grows with �̇ as a power law, i.e., Tc��̇� /Tc�0�−1��̇�.
The value of the exponent was estimated in �=0.52�3�,
which is consistent with that calculated theoretically in �7�.
In this work �Ref. �7��, the critical transition in the �3

→ ��2
� approximation was studied in a scalar field model
based on a convection-diffusion equation with Landau-
Ginzburg free energy, with the average ��2
 self-consistently
determined. Above the lower critical dimension, the expo-
nent � was evaluated to be 1/2 and 1/4 for the cases with
nonconserved and conserved order parameter, respectively.

Then, Tc crosses over to a saturation regime at larger �̇’s,
saturating at Tc��̇��1.18Tc�0�, where Tc�0��2.269 is the
critical temperature of the two-dimensional �2D� Ising
model. An exact value of Tc in the limit of infinite velocity
could be calculated analytically, and verified by a Monte
Carlo simulation, in a driven Ising model with friction. In

TABLE I. Exponents c1 and c2, obtained from FDC initial con-
ditions, corresponding to the values of �̇ enlisted in the first column.

�̇ Tc c1 c2

1/32 2.29 0.180�8� 0.99�2�
5 2.66 0.239�1� 0.84�1�
10 2.675 0.238�1� 0.87�1�
50 2.675 0.224�1� 0.85�1�
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FIG. 3. Log-log plots of the time evolutions of Op�t� at T=Tc for
the system in rectangular and square lattices of sizes Lx�Ly, as
indicated in the legends. In �a�, the external field has magnitude �̇
=1 /2 while in �b� the shear field magnitude is �̇=10. The straight
lines are least-square fits of the data. The insets in each figure show
the collapse of the power-law behaviors when Op�t� is multiplied by
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this case Tc�v→��=1 / ln� 1
2 ��3+�17���1.53Tc�0�. �10� The

increase of the critical temperature by action of the external
field and a posterior saturation regime was also observed in
the DLG model �10�. We also want to remark that in real
fluids there is also a negative contribution to the shift of the
critical temperature coming from hydrodynamics interactions
�24�. The total shift of Tc results to be negative for fluids
with low molecular weight �24� was also found in experi-
ments �25�. A review for other systems is given in �6�.

On the other hand, if the system is started from the GSC
initial condition �i.e., magnetization equal to 1� and then it is
left to evolve at the working temperature T�Tc, Op�t� de-
creases and follows a power-law behavior at T=Tc. Upward
or downward deviations are observed according if T�Tc or
T�Tc, respectively. Figure 6 exhibits the evolution of Op�t�
for the same parameters of Fig. 2. A clear power-law behav-
ior can be observed at T=2.66, which is exactly the same
temperature found when the system was started from FDC
configurations. This is precisely the signature of a second-
order phase transition in the model. In addition, the expected
deviations from the power-law behavior at T=2.65 and T
=2.67 are also observed.

Proceeding in the same way we did for the evolutions
started from FDCs, the critical behavior of the system was
investigated when it is started from GSC configurations in
rectangular lattices. Figures 7�a� and 7�b� show the critical
time evolution of Op when the system is initiated from a
GSC configuration, corresponding to �̇=1 /2 and �̇=10, re-
spectively. It is important to remark that the best power-law
behavior was obtained when the systems evolved at the same
critical temperatures found when they were initiated from
FDC configurations. According to the results, the transversal
size Ly does not play a relevant role in the critical behavior
of the system as it is shown in the evolutions in lattices with
Lx=500 �Fig. 7�a�� and also with Lx=2000 �Fig. 7�b��, but
rather the longitudinal size Lx is relevant. This is in agree-
ment with the results previously exhibited in Fig. 3 and al-
lows us to conclude that the critical evolution of the system

is independent of lattice shape effects for both initial con-
figurations.

B. Critical exponents

Focusing our attention on the power-law behavior at the
T=Tc, the exponents c1 and c2 corresponding to the dynamic
evolution of Op �Eq. �7�� and its logarithmic derivative
�� ln Op�t ,�� �Eq. �8�� can be estimated. Table I enlists the
obtained values of Tc and the mentioned exponents for small
and large values of �̇. The values of c1 and c2, for the case of
�̇=1 /32, are different compared with the those at larger �̇, as
it was already observed in Fig. 4. Furthermore, the value of
c1 for �̇=50 is also slightly different from the corresponding
cases of �̇=5 and �̇=10. This seems to be a rare behavior,
since there exists a saturation regime for the critical tempera-
ture at these values of �̇’s �Fig. 5� and we are induced to
think that the dynamic behavior of the system is independent
of the field magnitude in this limit. Opposite to that, the
estimated values of c2 are quite similar in the limit of large
�̇’s.

Table II enlists the values of the exponents c3 and c4 that
were obtained from a least-square fits of the critical evolu-
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tion of the system when it is initiated from the GSC configu-
rations �see Eqs. �10� and �11��. Here, the same situation that
happened for c1 is found for c3. In fact, the value of c3 for
�̇=1 /32 is different form the rest of the corresponding val-
ues at larger �̇’s and the value of c3 for �̇=50 is also different
from the values estimated for �̇=5 and �̇=10. On the other
hand, the values of c4 are similar for all the reported cases of
�̇’s.

According to the equations developed in Sec. III, the criti-
cal exponents of the second-order phase transition are ob-
tained by combining the estimated exponents c1, c2, c3, and
c4 enlisted above, corresponding to each case of �̇ investi-
gated. Table III resumes the obtained results and includes the
critical exponents of both the Ising and DLG model for the
sake of comparison. Since this issue for the case of the DLG
model still remains an open problem, the obtained theoretical
values from all proposed theories exposed in Refs. �10,27�
are included.

An overview of this table deserves some comments. First,
the calculated value of � at �̇=1 /32 is close to �=1 /8 cal-
culated for the 2d Ising model. This similarity could drive us
to think that the effects of the shear field are negligible, but
this is not the case, as it is evidenced by the values of the rest
of the critical exponents. In fact, anisotropy effects are im-
portant, even if a small external field, in this case �̇=1 /32, is
applied. The dynamic exponent z��̇=1 /32�=1.77�7� indi-
cates that the correlation length �in the longitudinal direction,
see Sec. IV C� grows faster with time than the corresponding
one in the Ising model z=2.16 and the difference between

����̇=1 /32�=0.78�1� and �	��̇=1 /32�=0.57�5� reveals an
anisotropic critical behavior even at small shear rate values.

The situation is different for the critical exponents at the
largest values of �̇ investigated. The values of the exponents
are similar between each other, suggesting that the critical
behavior does not depend of the applied field. This fact is
also present in Fig. 5, where the critical temperature is ap-
proximately the same for the largest values of �̇ used. Fur-
thermore, we also noticed that ����	 for �̇=1 /32, while it
happens the opposite at large �̇. At the moment, a reasonable
explanation for this issue is not possible due to the lack of a
theoretical framework about the critical behavior of this
model.

To end this section, one final comment is appropriate. In
view of the values exposed in Table III, the computed critical
exponents do not belong to the universality classes of the
Ising or of the DLG models, respectively. This fact is not
surprising since, as we have seen, the shear rate affects the
critical behavior of the model by inducing anisotropic effects
in the equilibrium model that changes its behavior. The case
of the DLG model is different. Although both models have a
similar phase behavior, the particle dynamics defined for the
DLG model conserves the number of particles while our
model does not. This difference will probably affect the val-
ues of the critical exponents and in consequence there is no
reason to expect that both models will belong to the same
universality class.

C. Longitudinal correlation

In Sec. III, it is assumed that the dynamic increase of the
longitudinal correlation length �	 and the breakage of the
corresponding transversal one �� at T=Tc are due to the
anisotropy effects induced by the external shear field. This
will cause that the short-time critical dynamic evolution of
the system initiated from either the FDC or GSC configura-
tions will depend only on the dynamic critical exponent
z	 =z that describes the critical dynamic increase of �	.

To show our hypothesis, we performed a scaling of the
whole curve of the Op�t� for the cases of �̇=1 /2 �small driv-
ing field� and �̇=10 �large driving field�. We propose a phe-
nomenological scaling in the spirit of the scaling form used
by Family and Vicsek to describe the roughness growth of
interfaces �26� �obviously in a different context not related to
ours�. This is given by the following expression:

Op = Lx
−�i f�t/Lx

z� , �12�

where Lx is the longitudinal size, according to the results
exhibited in Figs. 3, 7�a�, and 7�b�, respectively. The expo-
nent �i, i=FDC or GSC, is the exponent that has into ac-
count the finite-size critical behavior of Op and z is the rel-
evant dynamic critical exponent. The idea of this scaling
form is simple: if all the curves can be collapsed by using the
same dynamic exponent z independently of the initial condi-
tion used to start the simulations, it can be demonstrated
numerically that only one correlation is relevant in the criti-
cal dynamic behavior. Furthermore, Eq. �12� must contain
both the critical dynamic behavior of Op according to Eqs.
�5� and �10� at the early times of evolution and the finite-size

TABLE II. Exponents c3 and c4 obtained from the GSC configu-
ration, corresponding to the values of �̇ enlisted in the first column.

�̇ Tc c3 c4

1/32 2.29 0.076�1� 0.65�2�
5 2.66 0.401�1� 0.63�1�
10 2.675 0.405�5� 0.62�1�
50 2.675 0.360�7� 0.62�5�

TABLE III. Table of the calculated critical exponents for each
case of �̇ employed. The critical exponents corresponding to both
theories of the critical phase transition of the Ising and the DLG
models are also included for comparison. Since there is no aniso-
tropy in the Ising model, ��=�	 =� must be read. The results of this
table do not fit with the relation �=1 /�z suggested in �24�. See,
however, in Sec. V the discussion about our results our small shear
rates.

�̇ � z �� �	

1/32 0.105�1� 1.77�7� 0.78�1� 0.57�5�
5 0.39�1� 0.88�1� 1.10�1� 1.35�2�
10 0.39�1� 0.86�1� 1.14�1� 1.34�1�
50 0.37�1� 0.94�1� 1.10�1� 1.30�6�

Ising 2d 0.125 2.16 1 1

DLG�E=50� �Ref. �10�� 1/2 �4 /3 �3 /2 �1 /2

DLG�E=50� �Ref. �27�� �0.33 �1.998 �1.22 �0.63

MONTE CARLO STUDY OF THE PHASE TRANSITION IN… PHYSICAL REVIEW E 80, 051126 �2009�

051126-7



behavior in the limit of large times �t→�� where the corre-
lation length is comparable to Lx. Therefore, we have that
f�u� must be f � �t /Lx

z�−�/�	z or f � �t /Lx
z�−�/��z at early times

u�1, depending if the initial condition is FDC or GSC, re-
spectively. This fixes the finite-size exponent �i in �FDC
=� /�	 or �GSC=� /�� according to the initial configuration
used to start the simulations.

Figures 8, 9�a�, and 9�b� exhibit both the finite-size de-
pendence of Op�t� with the longitudinal size Lx �insets� and
the scaling function f�t /Lx

z� �main plots�, for the small and
large external fields, represented by �̇=1 /2 �Fig. 8� and �̇
=10 �Fig. 9�, respectively. In all plots, the finite-size depen-
dence is obtained by calculating the saturated value of Op�t�,
Op

sat, from Figs. 3 and 7, which were plotted versus Lx.
As it can be observed in the insets of the plots in Figs.

8�a� and 8�b�, the size dependence of Op in the long-time
regime can be well fitted by a power law as it is proposed in
Eq. �12�. The estimated exponents �FDC=0.50�1� and �GSC
=0.53�1� were not consistent with the expected values

�FDC=� /�	 =0.263�3� or �GSC=� /��=0.242�2�. However,
the good collapses performed with the same z��̇=1 /2�
=1.45�3� exhibited in the main plots of both figures clearly
evidences that only longitudinal correlations are relevant in
the critical evolution of the system at short times.

On the other hand, the insets of Figs. 9�a� and 9�b� show
that the finite-size behavior of Op�t� is also a power law for
the case of large shear field magnitudes, represented by �̇
=10. Opposite to the case with �̇=1 /2, the estimated values
of �FDC=0.29�2� and �GSC=0.34�3� were in agreement with
the expected values �FDC=� /�	 =0.291�2� or �GSC=� /��

=0.342�2� calculated from Table III. The good collapses per-
formed with z��̇=10� displayed in the main plots of the fig-
ures allow us to conclude that the same behavior observed
for small �̇’s is also exhibited by systems with large values
of the external fields.

To summarize, we have shown that the critical dynamic
evolution of the system, started from either FDCs or GSC
initial configurations, can be scaled with the dynamic critical
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exponent z proposed in Sec. III. Based on the arguments
exposed in Sec. III, we can conclude that, in the short-time
limit of the critical evolution, the correlations along the field
axis �longitudinal� are more relevant than transverse �perpen-
dicular� correlations. Furthermore, the obtained finite-size
exponents �i are only in accordance with those calculated
using the critical exponents enlisted in Table III correspond-
ing to �̇=10, while at �̇=1 /2 they differ by a factor of
nearly 2.

V. DISCUSSION AND CONCLUSIONS

In this work, the second-order phase transition in the 2d
nonconserved Ising model under the action of an external
driving shear field was investigated by studying the critical
evolution of the system in the short-time regime. In order to
apply this method, the dynamic evolution of the system at
T�Tc��̇� was monitored when it is initiated from FDC and
from the completely ordered configuration �GSC�.

Starting the system from FDC’s configurations, the time
evolution of the order parameter Op follows a power-law
behavior at the critical temperature Tc, while at slightly dif-
ferent values of T, the power law is modulated by a scaling
function that bends upwards or downwards depending if the
temperature is less or greater than Tc, respectively. The criti-
cal evolution was studied on square and rectangular lattices
of different sizes Lx and Ly and the results indicate that the
short-time critical evolution is free of shape effects. Further-
more, the saturation value reached by Op depends only on Lx.
The critical evolution started from FDC’s configurations was
studied for different values of �̇ and the diagram of reduced
temperatures Tc��̇� /Tc�0�−1 versus �̇, Tc�0�=2.269 J /kB
was drawn. As a first observation, all the values found for
Tc��̇� are always greater than the 2d critical temperature of
the Ising model that is typical for models driven out of equi-
librium by an external field. Furthermore, two regimes can
be distinguished: �1� a growing regime where Tc��̇� /Tc�0�
−1��̇�. The exponent � was calculated by means of a linear
regression fit, giving �=0.52�3�, which is consistent with
theoretical predictions in Ref. �7�; �2� a saturation regime,
where Tc��̇� does not change appreciably with �̇. In this
regime, Tc��̇��1.18Tc�0�. A similar diagram was already
observed in the DLG model �10�, where the temperature
grows with the magnitude of the driving field and then satu-
rates at large values.

On the other hand, the critical dynamic behavior of the
model was also investigated when it is initiated from the
GSC. A decreasing power law is observed for Op�t� at the
same Tc��̇� found when the system was started from FDC
configurations. This evidences that the model experiences a
second-order phase transition, as expected. Also in this case,
the critical evolution of the system was simulated on rectan-
gular and square lattices of different sizes. It was found that
the critical evolution is independent of the shape of the lat-
tice and the saturation value of Op only depends on the lon-
gitudinal size Lx, as for evolutions initiated from FDC con-
figurations. So, it is concluded as a general result that in the
short-time scale, the system critical evolution is free of shape
effects, as it is also observed for the critical evolution of the
DLG model in the same time interval �21�.

Then, the quantities ci �i=1,4�, defined in Sec. III, were
studied in order to calculate the critical exponents of the
transition. Starting from FDC’s initial configurations, the dy-
namic critical behavior at small �̇ is slower than at larger �̇’s.
As it can be observed in Fig. 2 and in Table I, the order-
parameter exponent c1 is smaller at �̇=1 /32 than at larger
�̇’s. Also, its logarithmic derivative exponent c2 is different
for this case. On the other hand, the values of c1 and c2 are
more stable for larger �̇’s, although c1 at �̇=50 is slightly
smaller than the estimated values for �̇=5,10. A similar sce-
nario was found for the order parameter c3 and its derivative
c4 exponents starting from the GSC configuration.

By combining these exponents, the static and dynamic
critical exponents �, ��, �	, and z were calculated and are
enlisted in Table III. The order-parameter critical exponent �
for �̇=1 /32 is similar to the value calculated for the Ising
model, but the values of z, �	, and �� show that the aniso-
tropy introduced by such a small external field is relevant. At
large �̇’s, all the exponents are similar within a small range,
suggesting that the critical behavior of the model is practi-
cally independent of the magnitude of the field in this re-
gime. Furthermore, Table III also shows that the critical ex-
ponents of the sheared model do not belong to the
universality class of the Ising or of the DLG model, even if
this model shows a similar phase behavior.

Finally, the critical exponents summarized above were
computed based on the fact that only the longitudinal corre-
lation length is relevant for the dynamic critical behavior of
the model, independently of the initial configuration. In order
to check this, a finite-size scaling of the dynamic evolution
of Op was performed with the aid of Eq. �12�. This equation
must contain both the critical dynamic behavior of Eqs. �5�
and �10� at early times of evolution and also the finite-size
critical behavior at long times. As a consequence, the finite-
size exponents must be �FDC=� /�	 and �GSC=� /�� for
both initial conditions, respectively. By measuring the satu-
rated values of Op, Op

sat, and computing the exponents �FDC
and �GSC, the time series of Op were collapsed for the sys-
tem initiated from ordered and disordered configurations as
the main plots of Figs. 8 and 9 show. Therefore, it is con-
cluded that only the longitudinal correlation length �	 takes
part in the critical evolution of the Ising model when an
external shear field is applied. Furthermore, the finite-size
exponents �FDC and �GSC were not consistent with the rates
� /�	 and � /�� for the cases corresponding to �̇=1 /2, while
they are in good agreement for a shear field of magnitude
�̇=10. This discrepancy between the predicted and measured
critical exponents for the case �̇=1 /2, together with the fact
that the values of the critical exponents estimated for smaller
�̇ are not similar with those corresponding to larger values of
�̇ �see Table III�, may be explained by conjecturing that, at
such small values of the shear rate, the system is less per-
turbed by the external driving. This means that the growth of
transverse critical correlations is less affected by the shear
field and may become relevant in the short-time regime. If
this is so, our scaling assumptions will be not longer valid
and both �’s need to be considered in order to propose scal-
ing forms for the dynamic critical behavior of the model in
this regime. In order to study this, simulations of the model
with �̇=1 /32 were performed, but they demanded a lot of
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computational time, especially when the system is started
from the GSC configurations because they needed larger lat-
tice sizes and evolution time intervals in order to obtain good
power laws and saturation regimes �L�10 000, evolution
time intervals of the order of 106 MCS or larger�, so we did
not obtained reliable results. As a consequence, this interest-
ing subject will be left for further research in the future. In
contrast, at larger �̇’s, the good agreement between � /�	 and
� /��, calculated from the exponents in Table III and the

estimated values of �FDC and �GSC, respectively, suggest that
the critical behavior is different from both cases with smaller
�̇’s and also from the Ising and DLG models at large external
fields �21,22�.
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